343 research outputs found

    Cavity flow over a wall-mounted fence

    Get PDF
    Ventilated cavity flow over a wall mounted fence is experimentally investigated in a cavitation tunnel. The flow over a 2-D fence, attached to the tunnel test section ceiling, is examined for a range of free-stream conditions. The dependence of cavity topology, cavitation number, upstream wall pressure distribution and drag on several parameters, including ventilation rate, fence height based Froude number (Fr), vapour pressure based cavitation number (σv ) and degree of fence immersion in the oncoming wall boundary layer, is investigated. Three different flow regimes are identified throughout the range of cavitation numbers for a particular set of free-stream conditions: shear layer cavitation, fully developed cavity and ‘blocked’ flow. The cavity exhibits a typical re-entrant jet closure and the re-entrant jet intensity is found to be a function of Fr. The high intensity re-entrant jet, present at high Fr, leads to an increase in drag. Drag decreases significantly with an increase in fence immersion in the oncoming boundary layer. Complementary measurements for a naturally cavitating flow are obtained for comparison. A more detailed examination of the topology and unsteady behaviour of ventilated and natural cavity flows over a 2-D wall-mounted fence was undertaken for fixed length cavities with varying free-stream velocity using high-speed and still imaging, X-ray densitometry and dynamic surface pressure measurements in two experimental facilities. Two main unsteady features are observed, the irregular small-scale shedding of structures at the cavity closure and a larger-scale re-entrant jet oscillation. Small-scale cavity break-up was associated with a high-frequency broad-band peak in the wall pressure spectra, found to be governed by the overlying turbulent boundary layer characteristics, similar to observations from single-phase flow over a forward-facing step. A low-frequency peak reflecting the oscillations in size of re-entrant jet, analogous to the ‘flapping’ motion in single-phase flow, was found to be modulated by gravity effects (i.e. a Froude number dependency). Likewise, a significant change in cavity behaviour was observed as the flow underwent transition analogous to the transition from sub- to super- critical regime in open-channel flow. A companion numerical study is undertaken to provide additional insight into particular flow features such as the separated flow region upstream of the fence and to assess the influence of blockage. An implicit unsteady compressible solver is used with a RANS k − ω SST turbulence model and VOF approach to capture the cavity interface. The numerical results are found to compare reasonably with the experimental data, additionally showing a significant influence of blockage on the studied flow. Along with the 2-D fence, a 3-D wall mounted fence, spanning nominally a quarter of the tunnel test section, is investigated. The impact that 3-D effects have on the cavity topology and the relations between the parameters characterizing the flow is observed. The most notable effect of 3-D flow is a change in the closure mechanism observed for low Fr. Following a decrease in Fr the closure topology transforms from a well defined single re-entrant jet regime, through a phase of gradual re-entrant jet widening to a completely split re-entrant jet separated into two branches. Generally, the 2-D and 3-D flows exhibited similar trends with any significant difference attributable to differing levels of flow confinement due to lesser width of 3-D fence

    Transcriptional Regulation of ATP2C1 Gene by Sp1 and YY1 and Reduced Function of its Promoter in Hailey–Hailey Disease Keratinocytes

    Get PDF
    Hailey–Hailey disease (HHD) is a blistering skin disease caused by malfunction of the Ca2+-dependent ATPase, ATP2C1. In this study, key regulatory regions necessary for the expression of the gene encoding human ATP2C1 were investigated. The transient reporter assay demonstrated that region +21/+57 was necessary for activation of the ATP2C1 promoter, and the electrophoretic mobility shift assay demonstrated that the region was recognized by the transcription factors, Sp1 and YY1. In accordance with this result, when Sp1 or YY1 was overexpressed in keratinocytes, an obvious increase in ATP2C1 promoter activity was observed, which was in contrast with the case where a mutant promoter lacking the binding sites for Sp1 and YY1 was used as the reporter. Ca2+-stimulation signal increased nuclear Sp1 proteins and ATP2C1 mRNA levels in normal keratinocytes. In contrast, both these increases were suppressed in keratinocytes from HHD patients. These results indicate that Sp1 and YY1 transactivate the human ATP2C1 promoter via cis-enhancing elements and that incomplete upregulation of ATP2C1 transcription contributes to the keratinocyte-specific pathogenesis of HHD. This is a report describing the regulation of the expression of ATP2C1

    EDITORIAL

    Get PDF
    Ligand-mediated drug delivery systems have enormous potential for improving the efficacy of cancer treatment. In particular, Arg-Gly-Asp peptides are promising ligand molecules for targeting α<sub>v</sub>β<sub>3</sub>/α<sub>v</sub>β<sub>5</sub> integrins, which are overexpressed in angiogenic sites and tumors, such as intractable human glioblastoma (U87MG). We here achieved highly efficient drug delivery to U87MG tumors by using a platinum anticancer drug-incorporating polymeric micelle (PM) with cyclic Arg-Gly-Asp (cRGD) ligand molecules. Intravital confocal laser scanning microscopy revealed that the cRGD-linked polymeric micelles (cRGD/m) accumulated rapidly and had high permeability from vessels into the tumor parenchyma compared with the PM having nontargeted ligand, “cyclic-Arg-Ala-Asp” (cRAD). As both cRGD/m- and cRAD-linked polymeric micelles have similar characteristics, including their size, surface charge, and the amount of incorporated drugs, it is likely that the selective and accelerated accumulation of cRGD/m into tumors occurred <i>via</i> an active internalization pathway, possibly transcytosis, thereby producing significant antitumor effects in an orthotopic mouse model of U87MG human glioblastoma

    Sonodynamic Therapy With Anticancer Micelles and High-Intensity Focused Ultrasound in Treatment of Canine Cancer

    Get PDF
    Sonodynamic therapy (SDT) is a minimally invasive anticancer therapy involving a chemical sonosensitizer and high-intensity focused ultrasound (HIFU). SDT enables the reduction of drug dose and HIFU irradiation power compared to those of conventional monotherapies. In our previous study, mouse models of colon and pancreatic cancer were used to confirm the effectiveness of SDT vs. drug-only or HIFU-only therapy. To validate its usefulness, we performed a clinical trial of SDT using an anticancer micelle (NC-6300) and our HIFU system in four pet dogs with spontaneous tumors, including chondrosarcoma, osteosarcoma, hepatocellular cancer, and prostate cancer. The fact that no adverse events were observed, suggests the usefulness of SDT

    Gene Transfer Using Micellar Nanovectors Inhibits Choroidal Neovascularization In Vivo

    Get PDF
    PURPOSE: Age-related macular degeneration caused by choroidal neovascularization (CNV) remains difficult to be treated despite the recent advent of several treatment options. In this study, we investigated the in vivo angiogenic control by intravenous injection of polyion complex (PIC) micelle encapsulating plasmid DNA (pDNA) using a mice CNV model. METHODS: The transfection efficiency of the PIC micelle was investigated using the laser-induced CNV in eight-week-old male C57 BJ/6 mice. Firstly, each mouse received intravenous injection of micelle encapsulating pDNA of Yellow Fluorescent Protein (pYFP) on days 1,3 and 5. The expression of YFP was analyzed using fluorescein microscopy and western blotting analysis. In the next experiments, each mouse received intravenous injection of micelle encapsulating pDNA of soluble Fms-like tyrosine kinase-1 (psFlt-1) 1,3 and 5 days after the induction of CNV and the CNV lesion was analyzed by choroidal flatmounts on day 7. RESULTS: Fluorescein microscopy and western blotting analysis revealed that the expression of YFP was confirmed in the CNV area after injection of the PIC micelle, but the expression was not detected neither in mice that received naked pDNA nor those without CNV. Furthermore, the CNV area in the mice that received intravenous injection of the psFlt-1-encapsulated PIC micelle was significantly reduced by 65% compared to that in control mice (p<0.01). CONCLUSIONS: Transfection of sFlt-1 with the PIC micelle by intravenous injection to mice CNV models showed significant inhibition of CNV. The current results revealed the significant potential of nonviral gene therapy for regulation of CNV using the PIC micelle encapsulating pDNA

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore